Answer:
The equilibrium constant will be "1.1×10⁻⁶ m²".
Explanation:
CH₄ has a varying temperatures response with such an initial concentration of [CH₄] = 0.087 m.
At equilibrium, concentration of H₂ will be 0.012 m.
2CH₄ ⇄ C₂H₂ + 3H₂
(0.087 m) (0) (0)
(0.087-2x) (x) (3x)
[H₂] = 0.012 m
⇒ 3x = 0.012
⇒ x = 0.004m
Now,
On putting the value of "x" in the above expression, we get
⇒ (0.087-0.004×2) (0.004) (0.012 m)
⇒ (0.079 m) (0.004) (0.012 m)
As we know,
[tex]Kc(Equilibrium \ constant)=\frac{[C2H2][H2]^3}{[CH4]^2}[/tex]
On putting the values in the above formula, we get
⇒ [tex]Kc=\frac{(0.004)(0.012)^3}{(0.079)^2}[/tex]
⇒ [tex]=1.1075\times 10^{-6}[/tex]
⇒ [tex]=1.1\times 10^{-6} \ m^2[/tex]