contestada

The following equation is true for all real values of n for which the expression on the left is defined, and B is a polynomial expression.

The following equation is true for all real values of n for which the expression on the left is defined and B is a polynomial expression class=

Respuesta :

Answer:

6n^3

Step-by-step explanation:

3/3 *9^10/453*7+sqrt175

The polynomial expression is [tex]$B=6 n^{3}[/tex] ; where, [tex]\quad n \neq 0[/tex].

What is Polynomial expression?

Given:

[tex]$\frac{n^{2}+12 n+27}{3 n^{3}+9 n^{2}} \div \frac{2 n^{2}+18 n}{B}=1$[/tex]

To find:

the value of B is a polynomial expression.

Step 1

Let, [tex]$\frac{n^{2}+12 n+27}{3 n^{3}+9 n^{2}} \div \frac{2 n^{2}+18 n}{B}=1$[/tex]

[tex]$\frac{\frac{n^{2}+12 n+27}{3 n^{3}+9 n^{2}}}{\frac{2 n^{2}+18 n}{B}}=1$[/tex]

Simplifying the above equation as

[tex]$\frac{\frac{n^{2}+12 n+27}{3 n^{3}+9 n^{2}}}{\frac{2 n^{2}+18 n}{B}}: \frac{B}{6 n^{3}}$[/tex]

then, we get

[tex]$\frac{B}{6 n^{3}}=1$[/tex]

Step 2

Multiply both sides by [tex]$6 n^{3}$[/tex], then we get

[tex]$\frac{B}{6 n^{3}} \cdot 6 n^{3}=1 \cdot 6 n^{3} $[/tex] where, [tex]\quad n \neq 0[/tex]

Simplifying the equation as

[tex]$B=6 n^{3}[/tex] ; where, [tex]\quad n \neq 0[/tex]

The value of [tex]$B=6 n^{3}[/tex] ; where, [tex]\quad n \neq 0[/tex].

Therefore, the polynomial expression is [tex]$B=6 n^{3}[/tex] ; where, [tex]\quad n \neq 0[/tex].

To learn more about polynomial expression

https://brainly.com/question/12978781

#SPJ2