Respuesta :

Answer:

The solutions to the system of equations are [tex]y=4,\:x=5[/tex].

Step-by-step explanation:

To solve the system [tex]\begin{bmatrix}4x+5y=40\\ 6x+3y=42\end{bmatrix}[/tex]

First,

[tex]\mathrm{Multiply\:}4x+5y=40\mathrm{\:by\:}3\:\mathrm{:}\:\quad \:12x+15y=120\\\\\mathrm{Multiply\:}6x+3y=42\mathrm{\:by\:}2\:\mathrm{:}\:\quad \:12x+6y=84[/tex]

[tex]\begin{bmatrix}12x+15y=120\\ 12x+6y=84\end{bmatrix}[/tex]

Subtract the first equation from the second equation

[tex]12x+6y=84\\\underline{-12x-15y=-120}\\-9y=-36[/tex]

Solve [tex]-9y=-36[/tex] for y:

[tex]\frac{-9y}{-9}=\frac{-36}{-9}\\y=4[/tex]

For [tex]12x+15y=12[/tex] plug in [tex]y=4[/tex] and solve for x

[tex]12x+15\cdot \:4=120\\12x=60\\x=5[/tex]

The solutions to the system of equations are:

[tex]y=4,\:x=5[/tex]