Answer:
171.5Hz,514.5Hz and 857.5Hz
Explanation:
We are given that
Distance between two loudspeaker,d=2.65 m
Distance of listener from one end=19.1 m
Distance of listener from other end=20.1 m
[tex]\Delta L=20.1-19.1=1[/tex]m
Speed of sound,v=343m/s
For destructive interference
[tex]f_{min,n}=\frac{(n-0.5)v}{\Delta L}[/tex]
Using the formula and substitute n=1
[tex]f_{min,1}=\frac{(1-0.5)\times 343}{1}=171.5Hz[/tex]
For n=2
[tex]f_{min,2}=\frac{(2-0.5)\times 343}{1}=514.5Hz[/tex]
For n=3
[tex]f_{min,3}=(3-0.5)\times 343=857.5Hz[/tex]
Hence, the three lowest frequencies that give minimum signal (destructive interference) at the listener's location is given by
171.5Hz,514.5Hz and 857.5Hz