Answer:
10 s
Explanation:
We are given that
[tex]g=10.0m/s^2[/tex]
Initially
[tex]v_x=86.6m/s,y=50.0m/s[/tex]
We have to find the time after firing taken by projectile before it hits the level ground.
v=[tex]\sqrt{v^2_x+v^2_y}[/tex]
[tex]v=\sqrt{(86.6)^2+(50)^2}=99.99 m/s[/tex]
[tex]\theta=tan^{-1}(\frac{v_x}{v_y})[/tex]
[tex]\theta=tan^{-1}(\frac{50}{86.6})=30^{\circ}[/tex]
Now,
[tex]t=\frac{vsin\theta}{g}[/tex]
Using the formula
[tex]t=\frac{99.99sin30}{10}[/tex]
[tex]t=4.99\approx 5 s[/tex]
Now, total time,T=2t=[tex]2\times 5=10s[/tex]
Hence, after firing it takes 10 s before the projectile hits the level ground.