Respuesta :

If x² = y³ , for what value of z does [tex]x^{3z}[/tex] =  [tex]Y^{9}[/tex]  ?

Answer:

z= 2

Step-by-step explanation:

To solve the question given, we will follow the steps below;

[tex]X^{3z}[/tex] =  [tex]Y^{9}[/tex]   -----------------------------------------------------------------(1)

but   applying the law of indices mᵃᵇ = (mᵃ)ᵇ

then

[tex]Y^{9}[/tex]  = [tex](Y^{3})^{3}[/tex]

replace  [tex]Y^{9}[/tex]  by  [tex](Y^{3})^{3}[/tex]  in equation (1)

[tex]X^{3z}[/tex] =  [tex]Y^{9}[/tex]

[tex]X^{3z}[/tex] =   [tex](Y^{3})^{3}[/tex]   --------------------------------------------------------------------(2)

but  from the question x² = y³

replace y³ by x²  in equation (2)

[tex]X^{3z}[/tex] =   [tex](Y^{3})^{3}[/tex]

[tex]X^{3z}[/tex] =   [tex](X^{2})^{3}[/tex]

[tex]X^{3z}[/tex] =   [tex]X^{6}[/tex]

3z = 6

divide both-side of the equation by 3

3z/3 = 6/3

On the left-hand side of the equation, 3 at the numerator will cancel-out 3  at the denominator leaving us with just z while on the right-hand side of the equation 6 will be divided by 3

z= 2