Respuesta :
Answer:
Given the potential, [tex] V = Ax^l+By^m+Cz^n+D [/tex]
The components of the electric field are:
[tex]E_x = \frac{-dV}{dx} = -Alx^l^-^1[/tex]
[tex]E_y = \frac{-dV}{dy} = - Bmy^m^-^1[/tex]
[tex]E_z = \frac{-dV}{dz} = - nCzn^n^-^1[/tex]
Let's calculate the potential difference for all given points.
[tex] V(0, 0, 0) = 10V => Ax^l+By^m+Cz^n+D = 10 [/tex]
[tex]=> D = 10[/tex]
[tex] V(1, 0, 0) = 4V => A + 10 = 4 [/tex]
Solving for A, we have:
[tex] A = 4 - 10 [/tex]
[tex] A = -6 [/tex]
[tex] V(0, 1, 0) = 6V => B + 10 = 6 [/tex]
Solving for B, we have:
[tex] B = 6 - 10[/tex]
[tex] B = -4 [/tex]
[tex] V(0, 0, 1) = 8V => C + 10 = 4 [/tex]
Solving for C, we have:
[tex] C = 8 - 10 [/tex]
[tex] C = -2 [/tex]
For all given points, let's calculate the magnitude of electric field as follow:
[tex]E_x (1, 0, 0) = 16 => - Alx^l^-^1 = 16[/tex]
[tex]Al = -16[/tex]
Solving for l, we have:
[tex]l = \frac{-16}{A}[/tex]
From above, A = -6
[tex]l = \frac{-16}{-6}[/tex]
[tex]l = \frac{8}{3}[/tex]
[tex] E_y (0, 1, 0) = 16=> Bmy^m^-^1 = 16 [/tex]
[tex]Bm = -16[/tex]
Solving for m, we have:
[tex]m = \frac{-16}{A}[/tex]
From above, B = -4
[tex]m = \frac{-16}{-4}[/tex]
[tex]m = 4[/tex]
[tex] E_y (0, 0, 1) = 16=> nCz^n^-^1 = 16 [/tex]
[tex]nC = - 16[/tex]
Solving for n, we have:
[tex]n = \frac{-16}{C}[/tex]
From above, C = -2
[tex]n = \frac{-16}{-2}[/tex]
[tex]n = 8[/tex]