Answer:
By exact formula
5076.59N/C
And by approximation formula
5218.93N/C
Explanation:
We are given that
Length of rod,L=2.6 m
Charge,q=98nC=[tex]98\times 10^{-9} C[/tex]
[tex]1nC=10^{-9} C[/tex]
a=13 cm=0.13 m
1 m=100 cm
By exact formula
The magnitude of the electric field due to the rod at a location 13 cm from the midpoint of the rod=[tex]\frac{kq}{a}\times \frac{1}{\sqrt{a^2+\frac{L^2}{4}}}[/tex]
Where k=[tex]9\times 10^9[/tex]
Using the formula
The magnitude of the electric field due to the rod at a location 13 cm from the midpoint of the rod=[tex]\frac{9\times 10^9\times 98\times 10^{-9}}{0.13}\times \frac{1}{\sqrt{(0.13)^2+\frac{(2.6)^2}{4}}}=5076.59N/C[/tex]
In approximation formula
a<<L
[tex]a^2+(\frac{L}{2})^2=\frac{L^2}{4}[/tex]
Therefore,the magnitude of the electric field due to the rod at a location 13 cm from the midpoint of the rod=[tex]\frac{kq}{a}\times \frac{1}{\sqrt{\frac{L^2}{4}}}[/tex]
The magnitude of the electric field due to the rod at a location 13 cm from the midpoint of the rod=[tex]\frac{9\times 10^9\times 98\times 10^{-9}}{0.13}\times \frac{1}{\sqrt{\frac{(2.6)^2}{4}}}=5218.93N/C[/tex]