Respuesta :
Answer:
[tex]P(52<X<70)=P(\frac{52-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{70-\mu}{\sigma})=P(\frac{52-60}{9.4}<Z<\frac{70-60}{9.4})=P(-0.851<z<1.064)[/tex]
And we can find this probability with this difference:
[tex]P(-0.851<z<1.064)=P(z<1.064)-P(z<-0.851)[/tex]
And if we use the normal standard distribution or excel we got:
[tex]P(-0.851<z<1.064)=P(z<1.064)-P(z<-0.851)=0.856-0.197=0.659[/tex]
Step-by-step explanation:
Let X the random variable that represent the time required to construct and test a particular component of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(60,9.4)[/tex]
Where [tex]\mu=60[/tex] and [tex]\sigma=9.4[/tex]
We want to find this probability:
[tex]P(52<X<70)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Using this formula we got:
[tex]P(52<X<70)=P(\frac{52-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{70-\mu}{\sigma})=P(\frac{52-60}{9.4}<Z<\frac{70-60}{9.4})=P(-0.851<z<1.064)[/tex]
And we can find this probability with this difference:
[tex]P(-0.851<z<1.064)=P(z<1.064)-P(z<-0.851)[/tex]
And if we use the normal standard distribution or excel we got:
[tex]P(-0.851<z<1.064)=P(z<1.064)-P(z<-0.851)=0.856-0.197=0.659[/tex]