Respuesta :

Answer:

a = 125°, b = 20°, c = 35°, d = 90°, e = 55°

Step-by-step explanation:

Quadrilateral PQRS is inscribed in a circle, therefore it is a cyclic quadrilateral.

PQ is diameter, SR is chord and PR is transversal such that:

PQ || SR... (given)

[tex] m\angle PRQ = 90°..(\angle \: inscribed \: in\: semicircle) \\

\huge \red {\boxed {\therefore d = 90°}} \\\\

m\angle RPQ= m\angle PRS .. (alternate \: \angle s) \\

\huge \purple {\boxed {\therefore c = 35°}} \\\\

In\: \triangle PQR, \\

c + d + e = 180°\\

35° + 90° + e = 180°\\

125° + e = 180°\\

e = 180° - 125°\\

\huge \orange {\boxed {\therefore e = 55°}} \\\\

a + e = 180°...(opposite \:\angle 's \: of \: cyclic \: quadrilateral) \\

a + 55°= 180°\\

a = 180°- 55°\\

\huge \blue {\boxed {a = 125°}} \\\\

In\: \triangle PSR, \\

a + b + 35°= 180°\\

125° + b + 35° = 180°\\

160° + b = 180°\\

b = 180° - 160°\\

\huge \pink {\boxed {b = 20°}}

[/tex]