Respuesta :

Answer:

Option D.

Step-by-step explanation:

The vertex form of a parabola along y-axis is

[tex]y=a(x-h)^2+k[/tex]      ...(1)

where, (h,k) is vertex and a is a constant.

From the given graph it is clear that the vertex of the parabola is (0,2). So, h=0 and k=2.

[tex]y=a(x-0)^2+2[/tex]

[tex]y=ax^2+2[/tex]    ...(2)

The graph passing through (6,5). Substitute x=6 and y=5 in the above equation.

[tex]5=a(6)^2+2[/tex]

[tex]5-2=36a[/tex]

[tex]3=36a[/tex]

[tex]\frac{3}{36}=a[/tex]

[tex]\frac{1}{12}=a[/tex]

Substitute [tex]a=\frac{1}{12}[/tex] in equation (2).

[tex]y=\frac{1}{12}x^2+2[/tex]

Therefore, the correct option is D.

Answer:

d

Step-by-step explanation: