Respuesta :

Answer:

We have axis of symmetry in [tex]x=-1[/tex]

The vertex point is [tex](-1, -9)[/tex]

The roots by factoring are

[tex]x=-4[/tex]

[tex]x=2[/tex]

Step-by-step explanation:

We have the function:

[tex]f(x)=x^2+2x-8[/tex]

Factoring the quadratic equation:

[tex]y=(x+4)(x-2)[/tex]

When [tex]y=0[/tex]

[tex]0=(x+4)(x-2)[/tex]

[tex]x=-4[/tex]

[tex]x=2[/tex]

The vertex point is [tex](h, k)[/tex]

From the equation, we have [tex]a=1,\:b=2 \text{ and }\:c=-8[/tex]

[tex]$h=-\frac{b}{2a}$[/tex]

[tex]$h=-\frac{2}{2\cdot \:1}$[/tex]

[tex]h=-1[/tex]

We also got the axis of symmetry

In order to find [tex]k[/tex] just use the [tex]$h=x_{vetex}$[/tex]:

[tex]k=(-1)^2+2(-1)-8\\k=1-2-8\\k=-9[/tex]

Once [tex]a>0[/tex], we have the minimum at [tex](-1, -9)[/tex]

Answer:

x = -1  axis of symmetry

(-1,-9) vertex

x = -4           x=2   are the roots

Step-by-step explanation:

y = x^2 + 2x - 8

The axis of symmetry is

h = -b/2a

h = -2/ (2*1) = -2/2 =-1

x = -1

The x coordinate of the vertex is at the axis of symmetry

To find the y value substitute into the function

y = (-1)^2 +2(-1) -8

y = 1-2-8

y = -9

The vertex is at ( -1,-9)

Factor

What 2 number multiply to -8 and add to 2

4*-2 = -8

4+-2 = 2

y = ( x+4) (x-2)

Using the zero product property to find the roots

0 = ( x+4) (x-2)

x+4 =0    x-2 =0

x = -4           x=2   are the roots