Respuesta :

Answer:

Step-by-step explanation:

y=x²+4x-7

=x²+4x+4-4-7

=(x+2)²-11

axis of symmetry is x=-2

vertex is (-2,-11)

x²+4x-7=0

[tex]x=\frac{-4 \pm\sqrt{4^2-4(1)(-7)} }{2(1)} \\=\frac{-4 \pm \sqrt{16+28} }{2} \\=\frac{-4 \pm 2\sqrt{11} }{2} \\=-2 \pm\sqrt{11}[/tex]

Thdev

Answer:

Axis of symmetry is x = -2

(-2, -11) is the vertex

Roots are

-2 + [tex]\sqrt{11}[/tex], -2 - [tex]\sqrt{11}[/tex]

Step-by-step explanation:

a) Axis of symmetry equation is: x = -b/2a

Original equation: y = [tex]x^2+4x-7[/tex]

So...

x= -4/2(1) = -2

Axis of symmetry is x = -2

b) Vertex Point can be found by plugging into original equation.

[tex]y =x^2+4x-7[/tex]

=> y = [tex](-2)^2+4(-2)-7[/tex]

=> 4 - 8 - 7 = y

=> -11 = y

(-2, -11) is the vertex

c) quadratic formula is  [tex]x = \frac{-b +-\sqrt{b^2-4ac} }{2a}[/tex]

Lets plug in the values.

[tex]\frac{-4 +- \sqrt{4^{2}-4(1)(-7) } }{2(1)}[/tex]

[tex]\frac{-4 +- \sqrt{16+28 } }{2}[/tex]

[tex]\frac{-4 +- \sqrt{44 } }{2}[/tex]

[tex]\sqrt{44} = 2\sqrt{11}[/tex]

-4 +- 2[tex]\sqrt{11}[/tex]

--------------

     2

Here, i will factor out 2, and take out the +- and make it into two equations

2(-2 + [tex]\sqrt{11}[/tex]) / 2 = -2 + [tex]\sqrt{11}[/tex]

2(-2 - [tex]\sqrt{11}[/tex]) / 2  =   -2 - [tex]\sqrt{11}[/tex]

x= -2 + [tex]\sqrt{11}[/tex]

or

x = -2 - [tex]\sqrt{11}[/tex]

Roots are

-2 + [tex]\sqrt{11}[/tex], -2 - [tex]\sqrt{11}[/tex]