Respuesta :
Answer:
a) [tex]L = 1.5[/tex]
[tex]L_q = 0.9[/tex]
[tex]W = \dfrac{1 }{8 } \, hour[/tex]
[tex]W_q = \dfrac{3}{40 } \, hour[/tex]
[tex]P = \dfrac{3}{5 }[/tex]
b) The new backacter should be recommended
c) The additional backacter should not be deployed
Explanation:
a) The required parameters are;
L = The number of customers available
[tex]L = \dfrac{\lambda }{\mu -\lambda }[/tex]
μ = Service rate
[tex]L_q[/tex] = The number of customers waiting in line
[tex]L_q = p\times L[/tex]
W = The time spent waiting including being served
[tex]W = \dfrac{1 }{\mu -\lambda }[/tex]
[tex]W_q[/tex] = The time spent waiting in line
[tex]W_q = P \times W[/tex]
P = The system utilization
[tex]P = \dfrac{\lambda }{\mu }[/tex]
From the information given;
λ = 12 trucks/hour
μ = 3 min/truck = 60/3 truck/hour = 20 truck/hour
Plugging in the above values, we have;
[tex]L = \dfrac{12 }{20 -12 } = \dfrac{12 }{8 } = 1.5[/tex]
[tex]P = \dfrac{12 }{20 } = \dfrac{3}{5 }[/tex]
[tex]L_q = \dfrac{3}{5 } \times \dfrac{3}{2 } = \dfrac{9}{10 } = 0.9[/tex]
[tex]W = \dfrac{1 }{20 -12 } = \dfrac{1 }{8 } \ hour[/tex]
[tex]W_q = \dfrac{3}{5 } \times \dfrac{1}{8 } = \dfrac{3}{40 } \, hour[/tex]
(b) The service rate with the new backacter = 1.5 minutes/truck which is thus;
μ = 60/1.5 trucks/hour = 40 trucks/hour
[tex]P = \dfrac{12 }{40 } = \dfrac{3}{10}[/tex]
[tex]W = \dfrac{1 }{40 -12 } = \dfrac{1 }{38 } \, hour[/tex]
[tex]W_q = \dfrac{3}{10 } \times \dfrac{1}{38 } = \dfrac{3}{380 } \, hour[/tex]
λ = 12 trucks/hour
Total cost = [tex]mC_s + \lambda WC_w[/tex]
m = 1
[tex]C_s[/tex] = GH¢ = 1300
[tex]C_w[/tex] = 400
Total cost with the old backacter is given as follows;
[tex]1 \times 1000 + 12 \times \dfrac{1}{8} \times 400 = \$ 1,600.00[/tex]
Total cost with the new backacter is given as follows;
[tex]1 \times 1300 + 12 \times \dfrac{1}{38} \times 400 = \$ 1,426.32[/tex]
The new backacter will reduce the total costs, therefore, the new backacter is recommended.
c)
Here μ = 3 min/ 2 trucks = 2×60/3 truck/hour = 40 truck/hour
[tex]\therefore W = \dfrac{1 }{40 -12 } = \dfrac{1 }{38 } \, hour[/tex]
Total cost with the one backacter is given as follows;
[tex]1 \times 1000 + 12 \times \dfrac{1}{8} \times 400 = \$ 1,600.00[/tex]
Total cost with two backacters is given as follows;
[tex]2 \times 1000 + 12 \times \dfrac{1}{38} \times 400 = \$ 2,126.32[/tex]
The additional backacter will increase the total costs, therefore, it should not be deployed.