Respuesta :

Answer:

[tex]=14a^5+14a^4-10a^3-16a[/tex]

Step-by-step explanation:

[tex]\left(12a^5-6a-10a^3\right)-\left(10a-2a^5-14a^4\right)\\\mathrm{Remove\:parentheses}:\quad \left(a\right)=a\\=12a^5-6a-10a^3-\left(10a-2a^5-14a^4\right)\\-\left(10a-2a^5-14a^4\right):\quad -10a+2a^5+14a^4\\-\left(10a-2a^5-14a^4\right)\\\mathrm{Distribute\:parentheses}\\=-\left(10a\right)-\left(-2a^5\right)-\left(-14a^4\right)\\Apply\:minus-plus\:rules\\-\left(-a\right)=a,\:\:\:-\left(a\right)=-a\\=-10a+2a^5+14a^4\\=12a^5-6a-10a^3-10a+2a^5+14a^4[/tex]

[tex]\mathrm{Simplify}\:12a^5-6a-10a^3-10a+2a^5+14a^4:\quad 14a^5+14a^4-10a^3-16a12a^5-6a-10a^3-10a+2a^5+14a^4\\Group\:like\:terms\\=12a^5+2a^5+14a^4-10a^3-6a-10a\\\mathrm{Add\:similar\:elements:}\:12a^5+2a^5=14a^5\\=14a^5+14a^4-10a^3-6a-10a\\\mathrm{Add\:similar\:elements:}\:-6a-10a=-16a\\=14a^5+14a^4-10a^3-16a[/tex]