Answer:
x = 5, y = 5
Step-by-step explanation:
[tex] {5}^{x - 3} \times {3}^{2y - 8} = 225 \\ {5}^{x - 3} \times {3}^{2y - 8} = 25 \times 9 \\ {5}^{x - 3} \times {3}^{2y - 8} = {5}^{2} \times {3}^{2} \\ equating \: like \: power \: terms \: from \: both \:\\ sides \\ {5}^{x - 3} = {5}^{2} \\ x - 3 = 2 (Bases\: are\: equal, \: so\: exponents \: \\will\: also\: be\: equal) \\ x = 3 + 2
\\ \huge \red{ \boxed{ x = 5}} \\ \\
{3}^{2y - 8} = {3}^{2} \\ 2y - 8 = 2(Bases\: are\: equal, \: so\: exponents \: \\will\: also\: be\: equal) \\ 2y = 2 + 8 \\ 2y = 10 \\ y = \frac{10}{2} \\ \huge \purple{ \boxed{y = 5}}[/tex]