Respuesta :

Answer:

Surface area of the cube = 216 square units

Step-by-step explanation:

Let the length of a side of a cube = x unit

Diameter of the sphere inscribed in this cube = length of a side of the cube

Volume of the sphere = [tex]\frac{4}{3}\pi r^{3}[/tex]

Where r = radius of the sphere = [tex]\frac{x}{2}[/tex] units

36π = [tex]\frac{4}{3}\pi (\frac{x}{2})^{3}[/tex]

36π = [tex]\frac{4x^{3}\pi }{24}[/tex]

36×24 = 4x³

x = [tex]\sqrt[3]{\frac{36\times 24}{4} }[/tex]

x = 6 units

Length of a side of the cube = 6 units

Surface area of the cube = 6×(Side)²

                                          = 6×(6)²

                                          = 216

                                          = 216 square units