Answer: The final temperature is [tex]38.0^0C[/tex]
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.
[tex]heat_{released}=heat_{absorbed}[/tex]
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
[tex]-[m_1\times c_1\times (T_{final}-T_1)]=[m_2\times c_2\times (T_{final}-T_2)][/tex]
[tex]-[m_1\times (T_{final}-T_1)]=[m_2\times (T_{final}-T_2)][/tex] (as [tex]c_1=c_2[/tex])
Q = heat absorbed or released
[tex]m_1[/tex] = mass of water at [tex]85.0^0C[/tex] = [tex]volume\times density=41.0ml\times 1g/ml=41.0g[/tex]
[tex]m_2[/tex] = mass of water at [tex]26.0^0C[/tex] = [tex]volume\times density=161.0ml\times 1g/ml=161.0g[/tex]
[tex]T_{final}[/tex] = final temperature = ?
[tex]T_1[/tex] = temperature of 41.0 ml of water = [tex]85.0^0C[/tex]
[tex]T_2[/tex] = temperature of 161.0 ml of water = [tex]26.0^0C[/tex]
Now put all the given values, we get
[tex]-[41.0\times (T_f-85.0)^0C]=161.0\times (T_f-26.0)^0C[/tex]
[tex]T_f=38.0^0C[/tex]
Thus the final temperature is [tex]38.0^0C[/tex]