The vertex form of a quadratic function is f(x) = a(x - h)2 + k. What is the vertex of each function? Match the function rule with the coordinates of its vertex.

Answer:
For [tex]f(x)=6(x-5)^2-9[/tex] the vertex is: (5, -9)
For [tex]f(x)=9(x+5)^2-6[/tex] the vertex is: (-5, -6)
For [tex]f(x)=5(x-6)^2+9[/tex] the vertex is: (6, 9)
For [tex]f(x)=6(x+9)^2-5[/tex] the vertex is: (-9, -5)
For [tex]f(x)=9(x-5)^2+6[/tex] the vertex is: (5, 6)
Step-by-step explanation:
Let's identify the vertex pair [tex](x_v,y_v)[/tex] from each equation:
A) [tex]f(x)=6(x-5)^2-9[/tex] corresponds to [tex]x_v=5\,\,\,and\,\,\,y_v=-9[/tex] , that is: (5, -9)
B) [tex]f(x)=9(x+5)^2-6[/tex] corresponds to [tex]x_v=-5\,\,\,and\,\,\,y_v=-6[/tex] , that is: (-5, -6)
C) [tex]f(x)=5(x-6)^2+9[/tex] corresponds to [tex]x_v=6\,\,\,and\,\,\,y_v=9[/tex] , that is: (6, 9)
D) [tex]f(x)=6(x+9)^2-5[/tex] corresponds to [tex]x_v=-9\,\,\,and\,\,\,y_v=-5[/tex] , that is: (-9, -5)
E) [tex]f(x)=9(x-5)^2+6[/tex] corresponds to [tex]x_v=5\,\,\,and\,\,\,y_v=6[/tex] , that is: (5, 6)