The vertex form of a quadratic function is f(x) = a(x - h)2 + k. What is the vertex of each function? Match the function rule with the coordinates of its vertex.

The vertex form of a quadratic function is fx ax h2 k What is the vertex of each function Match the function rule with the coordinates of its vertex class=

Respuesta :

Answer:

For  [tex]f(x)=6(x-5)^2-9[/tex]   the vertex is: (5, -9)

For  [tex]f(x)=9(x+5)^2-6[/tex]  the vertex is: (-5, -6)

For  [tex]f(x)=5(x-6)^2+9[/tex]  the vertex is: (6, 9)

For  [tex]f(x)=6(x+9)^2-5[/tex]  the vertex is: (-9, -5)

For  [tex]f(x)=9(x-5)^2+6[/tex]  the vertex is: (5, 6)

Step-by-step explanation:

Let's identify the vertex pair [tex](x_v,y_v)[/tex] from each equation:

A)  [tex]f(x)=6(x-5)^2-9[/tex]  corresponds to [tex]x_v=5\,\,\,and\,\,\,y_v=-9[/tex] , that is: (5, -9)

B)  [tex]f(x)=9(x+5)^2-6[/tex]  corresponds to [tex]x_v=-5\,\,\,and\,\,\,y_v=-6[/tex] , that is: (-5, -6)

C)  [tex]f(x)=5(x-6)^2+9[/tex]  corresponds to [tex]x_v=6\,\,\,and\,\,\,y_v=9[/tex] , that is: (6, 9)

D)  [tex]f(x)=6(x+9)^2-5[/tex]  corresponds to [tex]x_v=-9\,\,\,and\,\,\,y_v=-5[/tex] , that is: (-9, -5)

E)  [tex]f(x)=9(x-5)^2+6[/tex]  corresponds to [tex]x_v=5\,\,\,and\,\,\,y_v=6[/tex] , that is: (5, 6)

The answer is (vertex (5,-9) and using Tex