Answer:
[tex]F = 3.82 * 10^4N[/tex]
Explanation:
Given
Mass of satellite 1 = 5.3 * 10¹²kg
Mass of satellite 2 = 3.5 * 10⁸kg
Distance between them = 1,800 m
Required
Gravitational Force between them.
The gravitational force between them is calculated as thus;
[tex]F = \frac{Gm_1m_2}{r^2}[/tex]
Where G = Gravitational Constant
[tex]G = 6.67408 * 10^{-11} Nm^2/kg^2[/tex]
[tex]m_1 = 5.3 * 10^{12}kg[/tex]
[tex]m_2 = 3.5 * 10^8kg[/tex]
[tex]r = 1800m[/tex]
Substituting these values in the above formula;
[tex]F = \frac{Gm_1m_2}{r^2}[/tex] becomes
[tex]F = \frac{6.67408 * 10^{-11} * 5.3 * 10^{12}*3.5 * 10^8}{1800^2}[/tex]
[tex]F = \frac{6.67408 * 5.3 * 3.5 * 10^{-11} * 10^{12} * 10^8}{1800^2}[/tex]
[tex]F = \frac{123.804184 * 10^{9}}{3240000}[/tex]
[tex]F = \frac{123804184000}{3240000}[/tex]
[tex]F = 38211.1679012[/tex]
[tex]F = 3.82 * 10^4N[/tex] ---- Approximated
Hence the gravitational force between them is [tex]3.82 * 10^4N[/tex]