Respuesta :

Answer:

[tex] \boxed{x = 15,y = 17} [/tex]

Step-by-step explanation:

[tex]Vertically \: opposite \: angles \: area \: equal \\ \\ So, \\ \\ = > 7x \degree + 7\degree = 112\degree \\ \\ = > 7x\degree = 112\degree - 7\degree \\ \\ = > 7x\degree = 105\degree \\ \\ = > x\degree = \frac{105}{7} \degree \\ \\ = > x\degree = 15\degree \\ \\ \\ \\ Supplementary \: angles \: add \: up \: to \: 180 \degree \\ \\ So, \\ \\ = >4y\degree + 112\degree = 180\degree \\ \\ = > 4y\degree = 180\degree - 112\degree \\ \\ = > 4y\degree = 68\degree \\ \\ = > y \degree= \frac{68}{4} \degree \\ \\ = > y\degree = 17\degree[/tex]

Find the values of x and y.

Step-by-step explanation:

C : x = 17,y = 15