Answer:
6.48 days
Step-by-step explanation:
[tex]D(t) = -21\cos\left(\dfrac{2\pi}{29.5}t\right) + 384\\\\380=-21\cos\left(\dfrac{2\pi}{29.5}t\right)+384\\\\\dfrac{4}{21}=\cos\left(\dfrac{2\pi}{29.5}t\right)\qquad\text{subtract 384, divide by -21}\\\\\dfrac{2\pi}{29.5}t=\arccos{\dfrac{4}{21}}\qquad\text{use the inverse cosine function}\\\\t=\dfrac{29.5}{2\pi}\arccos{\dfrac{4}{21}}\approx 6.4752\quad\text{days}[/tex]
About 6.48 days after perigee, the moon reaches a distance of 380,000 km from Earth.