Point A is at (6,-6) and point C is at (-6,-2). Find the coordinates of point B on line AC such that AB= 3/4 AC

Respuesta :

Answer:

-3, -3

Step-by-step explanation:

The coordinates of point B on line AC is (6/7, -30/7).

Given that, A(6, -6), C(-6,-2) and AB= 3/4 AC.

What is the section formula?

The section formula is P(x, y)[tex]=(\frac{mx_{2} +nx_{1}}{m+n}, \frac{my_{2} +ny_{1}}{m+n} )[/tex].

Now, AB= 3/4 AC⇒AB:AC=3:4

P(x,y)[tex]=(\frac{3(-6)+4(6)}{3+4}, \frac{3(-2) +4(-6)}{3+4} )[/tex]

=(6/7, -30/7)

Therefore, the coordinates of point B on line AC is (6/7, -30/7).

To learn more about the coordinates visit:

https://brainly.com/question/7869125.

#SPJ5