Respuesta :
Answer:
[tex]\frac{x^2+4x-1}{x(x+2)}[/tex]
Step-by-step explanation:
Given
[tex]\frac{x+5}{x+2}[/tex] - [tex]\frac{x+1}{x^2+2x}[/tex] ← factor denominator
= [tex]\frac{x+5}{x+2}[/tex] - [tex]\frac{x+1}{x(x+2)}[/tex]
We require the fractions to have a common denominator.
Multiply numerator/denominator of first fraction by x
= [tex]\frac{x(x+5)}{x(x+2)}[/tex] - [tex]\frac{x+1}{x(x+2)}[/tex]
Subtract terms on numerator leaving the common denominator
= [tex]\frac{x^2+5x-x-1}{x(x+2)}[/tex]
= [tex]\frac{x^2+4x-1}{x(x+2)}[/tex]