Respuesta :

Answer:

n=10

Step-by-step explanation:

The given equation is  

[tex]10+12+14+...+2n=90[/tex]        ...(1)

Let nth term is 2n.

We need to find the values of n.

It is clear that [tex]S_n=10+12+14+...+2n[/tex] is sum of A.P., whose first term is 10 and common difference is 2.

Sum of A.P. is  

[tex]S_n=\dfrac{n}{2}[2a+(n-1)d][/tex]

where, a is first term and d is common difference.

Substitute a=10 and d=2 in the above formula.

[tex]S_n=\dfrac{n}{2}[2(10)+(n-1)2][/tex]

[tex]10+12+14+...+2n=n[10+n-1][/tex]

[tex]10+12+14+...+2n=n[9+n][/tex]     ...(2)

From (1) and (2), we get

[tex]n(9+n)=90[/tex]

[tex]n^2+9n-90=0[/tex]

Splitting middle term, we get

[tex]n^2+15n-6n-90=0[/tex]

[tex]n(n+15)-6(n+15)=0[/tex]

[tex](n+15)(n-6)=0[/tex]

[tex]n=-15,6[/tex]

Since, n represents the number of terms so n cannot be a negative number, therefore number of term is 6.

Note: nth term and variable n both are different.

[tex]a_n=a+(n-1)d[/tex]

[tex]a_6=10+(6-1)2=10+10=20[/tex]

Sixth term is 20. So,

[tex]2n=20[/tex]

[tex]n=10[/tex]

Therefore, the value of n is 10.