part 3. Find the value of the trig function indicated, use Pythagorean theorem to find the third side if you need it.

Answer: [tex]\bold{9)\ \sin \theta=\dfrac{1}{3}\qquad 10)\ \sin \theta = \dfrac{4}{5}\qquad 11)\ \cos \theta = \dfrac{\sqrt{11}}{6}\qquad 12)\ \tan \theta = \dfrac{17\sqrt2}{26}}[/tex]
Step-by-step explanation:
Pythagorean Theorem is: a² + b² = c² , where "c" is the hypotenuse
[tex]9)\ \sin \theta=\dfrac{\text{side opposite of}\ \theta}{\text{hypotenuse of triangle}}=\dfrac{4}{12}\quad \rightarrow \large\boxed{\dfrac{1}{3}}[/tex]
Note: 4² + (8√2)² = hypotenuse² → hypotenuse = 12
[tex]10)\ \sin \theta=\dfrac{\text{side opposite of}\ \theta}{\text{hypotenuse of triangle}}=\dfrac{16}{20}\quad \rightarrow \large\boxed{\dfrac{4}{5}}[/tex]
Note: 12² + opposite² = 20² → opposite = 16
[tex]11)\ \cos \theta=\dfrac{\text{side adjacent to}\ \theta}{\text{hypotenuse of triangle}}=\dfrac{\sqrt{11}}{6}\quad =\large\boxed{\dfrac{\sqrt{11}}{6}}[/tex]
Note: adjacent² + 5² = 6² → adjacent = √11
[tex]12)\ \tan \theta=\dfrac{\text{side opposite of}\ \theta}{\text{side adjacent to}\ \theta}=\dfrac{17}{13\sqrt2}\quad =\large\boxed{\dfrac{17\sqrt2}{26}}[/tex]
Note: adjacent² + 7² = (13√2)² → adjacent = 17