Respuesta :

Answer:  [tex]\bold{9)\ \sin \theta=\dfrac{1}{3}\qquad 10)\ \sin \theta = \dfrac{4}{5}\qquad 11)\ \cos \theta = \dfrac{\sqrt{11}}{6}\qquad 12)\ \tan \theta = \dfrac{17\sqrt2}{26}}[/tex]

Step-by-step explanation:

Pythagorean Theorem is: a² + b² = c²   , where "c" is the hypotenuse

[tex]9)\ \sin \theta=\dfrac{\text{side opposite of}\ \theta}{\text{hypotenuse of triangle}}=\dfrac{4}{12}\quad \rightarrow \large\boxed{\dfrac{1}{3}}[/tex]

Note: 4² + (8√2)² = hypotenuse²   →   hypotenuse = 12

[tex]10)\ \sin \theta=\dfrac{\text{side opposite of}\ \theta}{\text{hypotenuse of triangle}}=\dfrac{16}{20}\quad \rightarrow \large\boxed{\dfrac{4}{5}}[/tex]

Note: 12² + opposite² = 20²   →   opposite = 16

[tex]11)\ \cos \theta=\dfrac{\text{side adjacent to}\ \theta}{\text{hypotenuse of triangle}}=\dfrac{\sqrt{11}}{6}\quad =\large\boxed{\dfrac{\sqrt{11}}{6}}[/tex]

Note: adjacent² + 5² = 6²   →   adjacent = √11

[tex]12)\ \tan \theta=\dfrac{\text{side opposite of}\ \theta}{\text{side adjacent to}\ \theta}=\dfrac{17}{13\sqrt2}\quad =\large\boxed{\dfrac{17\sqrt2}{26}}[/tex]

Note: adjacent² + 7² = (13√2)²   →   adjacent = 17