Respuesta :
Answer:
a) [tex]F = 210.803\,N[/tex], b) [tex]W_{F} = 779.971\,J[/tex], c) [tex]W_{f} = 235.683\,J[/tex], d) [tex]W_{N} = 0\,J[/tex]; [tex]W_{g} = 544.289\,J[/tex], e) [tex]W_{net} = 0\,J[/tex]
Explanation:
a) The net force exerted on the crate is:
[tex]\Sigma F = F - m\cdot g \cdot \sin \theta - \mu_{k}\cdot m\cdot g \cdot \cos \theta = 0[/tex]
The magnitud of the force that the work must apply to the crate is:
[tex]F = m\cdot g \cdot \sin \theta + \mu_{k}\cdot m\cdot g \cdot \cos \theta[/tex]
[tex]F = (30\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \sin 30^{\circ} + 0.25 \cdot (30\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \cos 30^{\circ}[/tex]
[tex]F = 210.803\,N[/tex]
b) The work done on the crate due to the external force is:
[tex]W_{F} = (210.803\,N)\cdot (3.7\,m)[/tex]
[tex]W_{F} = 779.971\,J[/tex]
c) The work done on the crate due to the external force is:
[tex]W_{f} = (63.698\,N)\cdot (3.7\,m)[/tex]
[tex]W_{f} = 235.683\,J[/tex]
d) The work done on the crate due the normal force is zero, since such force is perpendicular to the motion direction.
[tex]W_{N} = 0\,J[/tex]
And, the work done by gravity is:
[tex]W_{g} = (147.105\,N)\cdot (3.7\,m)[/tex]
[tex]W_{g} = 544.289\,J[/tex]
e) Lastly, the total work done is:
[tex]W_{net} = W_{F} - W_{f} - W_{g} - W_{N}[/tex]
[tex]W_{net} = 779.971\,J - 235.683\,J - 0\,N - 544.289\,J[/tex]
[tex]W_{net} = 0\,J[/tex]