Answer:
Step-by-step explanation:
Area of a sector = [tex]\frac{\theta}{360} * \pi r^{2}\ where\ \pi r^{2} \ is\ the\ area\ of\ the\ circle[/tex]
theta is the sector's central angle
Area of the sector = [tex]\frac{\theta}{360} * \ area\ of\ a\ circle[/tex]
Given area of a circle = 18πin² and area of a sector = 6πin²
On substituting;
6π = [tex]\theta/360 * 18 \pi[/tex]
Dividing both sides by 18π we have;
1/3 = [tex]\theta/360[/tex]
[tex]3 \theta = 360\\\theta = 360/3\\\theta = 120^{0}[/tex]
The sector's central angle is 120°