Respuesta :

Answer:

B

Step-by-step explanation:

Expressing the ratios as fractions, that is

[tex]\frac{a}{b}[/tex] = [tex]\frac{3}{1}[/tex] ( cross- multiply )

a = 3b

[tex]\frac{b}{c}[/tex] = [tex]\frac{1}{5}[/tex] ( cross- multiply )

c = 5b

------------------------------------------

Given

[tex]\frac{2a+3b}{4b+3c}[/tex] , substitute values from above for a and c

= [tex]\frac{2(3b)+3b}{4b+3(5b)}[/tex]

= [tex]\frac{6b+3b}{4b+15b}[/tex]

= [tex]\frac{9b}{19b}[/tex] ← cancel b on numerator/ denominator

= [tex]\frac{9}{19}[/tex] → B