Answer:
[tex] (17.714-28.714) -2.681 \sqrt{\frac{4.461^2}{7} +\frac{7.387^2}{7}}= -19.745[/tex]
[tex] (17.714-28.714) +2.681 \sqrt{\frac{4.461^2}{7} +\frac{7.387^2}{7}}= -2.255[/tex]
Step-by-step explanation:
For this case we have the following info given:
Treatment: 12 13 15 19 20 21 24
Control: 18 23 24 30 32 35 39
We can find the sample mean and deviations with the the following formulas:
[tex] \bar X = \frac{\sum_{i=1}^n X_i}{n}[/tex]
[tex] s =\sqrt{\frac{\sum_{i=1}^n (X_i- \bar X)^2}{n-1}}[/tex]
And repaplacing we got:
[tex] \bar X_T = 17.714[/tex] the sample mean for treatment
[tex] \bar X_C = 28.714[/tex] the sample mean for treatment
[tex] s_T= 4.461[/tex] the sample deviation for treatment
[tex] s_C= 7.387[/tex] the sample deviation for control
[tex]n_T= n_C= 7[/tex] the sample size for each sample
The degrees of freedom are given by:
[tex] df= 7+7-2= 12[/tex]
The confidence interval for the difference of means is given by:
[tex] (\bar X_T -\bar X_C) \pm t_{\alpha/2} \sqrt{\frac{s^2_T}{n_T} +\frac{s^2_C}{n_C}}[/tex]
The confidence is 98% so then the significance is [tex]\alpha=0.02[/tex] and [tex] \alpha/2 =0.01[/tex]. Then the critical value would be:
[tex] t_{\alpha/2}=2.681[/tex]
And replacing we got:
[tex] (17.714-28.714) -2.681 \sqrt{\frac{4.461^2}{7} +\frac{7.387^2}{7}}= -19.745[/tex]
[tex] (17.714-28.714) +2.681 \sqrt{\frac{4.461^2}{7} +\frac{7.387^2}{7}}= -2.255[/tex]