Respuesta :

Answer:

D. 125

Step-by-step explanation:

Given

[tex](\frac{1}{5})^{-3}[/tex]

Required

Find Equivalent

From law of indices

[tex](\frac{1}{a})^{-x} = \frac{1}{(\frac{1}{a})^{x}}[/tex]

So,

[tex](\frac{1}{5})^{-3} = \frac{1}{(\frac{1}{5})^{3}}[/tex]

Expand denominator

[tex](\frac{1}{5})^{-3} = \frac{1}{(\frac{1}{5})*(\frac{1}{5})*(\frac{1}{5})}}[/tex]

[tex](\frac{1}{5})^{-3} = \frac{1}{(\frac{1}{125})}}[/tex]

Split expression on the right and side

[tex](\frac{1}{5})^{-3} = 1/{(\frac{1}{125})}}[/tex]

Convert divide (/) to multiplication (*)

[tex](\frac{1}{5})^{-3} = 1*{(\frac{125}{1})}}[/tex]

[tex](\frac{1}{5})^{-3} = 1*125[/tex]

[tex](\frac{1}{5})^{-3} = 125[/tex]

Hence, [tex](\frac{1}{5})^{-3}[/tex] is equivalent to 125