Respuesta :
Answer:
The value of [tex]x[/tex] :
[tex]x = -\frac{39}{10}[/tex]
Step-by-step explanation:
-Solve for [tex]x[/tex]:
[tex]\frac{5}{6}x + \frac{1}{4} = -3[/tex]
Subtract both sides by [tex]\frac{1}{4}[/tex] :
[tex]\frac{5}{6}x + \frac{1}{4} - \frac{1}{4} = -3 - \frac{1}{4}[/tex]
-Change [tex]-3[/tex] to a fraction [tex]-\frac{12}{4}[/tex] , because [tex]-\frac{12}{4}[/tex] is equal to [tex]-3[/tex], Then you subtract [tex]\frac{1}{4}[/tex] and [tex]-\frac{12}{4}[/tex] :
[tex]\frac{5}{6}x + \frac{1}{4} - \frac{1}{4} = -\frac{12}{4} - \frac{1}{4}[/tex]
[tex]\frac{5}{6}x = -\frac{13}{4}[/tex]
-Multiply both sides by [tex]\frac{6}{5}[/tex], which is the reciprocal of [tex]\frac{5}{6}[/tex] :
[tex]\frac{5}{6}x = -\frac{13}{4}[/tex]
[tex]x = -\frac{13}{4} \times (\frac{6}{5})[/tex]
-Multiply both [tex]-\frac{13}{4}[/tex] and [tex]\frac{6}{5}[/tex] by multiplying the numerators and the denominators:
[tex]x = -\frac{13}{4} \times (\frac{6}{5})[/tex]
[tex]x = \frac{-13 \times 6}{4 \times 5}[/tex]
-Then, you multiply them:
[tex]x = \frac{-13 \times 6}{4 \times 5}[/tex]
[tex]x = \frac{-78}{20}[/tex]
-Simplify the fraction:
[tex]x = \frac{-78}{20}[/tex]
[tex]x = -\frac{39}{10}[/tex]
So, the answer is [tex]x = -\frac{39}{10}[/tex] .