Find the perimeter of the polygon. Round your answer to the nearest tenth.
32.1
35.8
37.6
39.2

Answer:
32.1
Step-by-step explanation:
d=sqrt ((x2-x1)^2+(y2-y1)^2 )
Find length of AB
d=sqrt((2-(-4))^2+(0-5)^2)
d=sqrt(6^2+(-5)^2)
d=sqrt(36+25)
d=sqrt(61)
d= around 7.8
Find length of BC
d=sqrt((4-(-4))^2+(10-5)^2)
d=sqrt(8^2+5^2)
d=sqrt(64+25)
d=sqrt(89)
d= around 9.4
Find length CD
d=sqrt((8-4)^2+(7-10)^2)
d=sqrt(4^2+(-3)^2)
d=sqrt(16+9)
d=sqrt(25)
d=5
Find length DE
d=sqrt((4-8)^2+(5-7)^2)
d=sqrt((-4)^2+(-2)^2)
d=sqrt(16+4)
d=sqrt(20)
d= around 4.5
Find length EA
d=sqrt ((4-2)^2+(5-0)^2 )
d=sqrt(2^2+5^2)
d=sqrt(4+25)
d=sqrt(29)
d= around 5.4
P=7.8+9.4+5+4.5+5.4
P=32.1
The perimeter of the figure is 32.1, the correct option is A.
The distance formula for two points (x,y) and (x',y') is
D = [tex]\rm \sqrt{ (x-x')^2 +( y-y')^2}[/tex]
A figure with coordinates A,B,C,D,E is shown.
The length of the sides has to be determined to calculate the perimeter
The length of AB
[tex]\rm d= \sqrt{((2-(-4))^2+(0-5)^2}d=\sqrt{(6^2+(-5)^2)}d= \sqrt{{(36+25)}}d=\sqrt{61}[/tex]
d ≈ 7.8
The length of BC
[tex]\rm d= \sqrt{((4-(-4))^2+(10-5)^2)}d=\sqrt{(8^2+5^2)}d=\sqrt{(64+25)}d=\sqrt{(89)}[/tex]
d≈ 9.4
The length of CD
d=sqrt(25)
d≈ 5
The length of DE
d ≈ 4.5
The length of EA
d ≈ 5.4
Perimeter = Sum of all the sides
Perimeter = 7.8+9.4+5+4.5+5.4
Perimeter =32.1
Therefore, the perimeter of the figure is 32.1, the correct option is A.
To know more about Distance formula
https://brainly.com/question/8283882
#SPJ2