Respuesta :

Answer:

32.1

Step-by-step explanation:

d=sqrt ((x2-x1)^2+(y2-y1)^2 )

Find length of AB

d=sqrt((2-(-4))^2+(0-5)^2)

d=sqrt(6^2+(-5)^2)

d=sqrt(36+25)

d=sqrt(61)

d= around 7.8

Find length of BC

d=sqrt((4-(-4))^2+(10-5)^2)

d=sqrt(8^2+5^2)

d=sqrt(64+25)

d=sqrt(89)

d= around 9.4

Find length CD

d=sqrt((8-4)^2+(7-10)^2)

d=sqrt(4^2+(-3)^2)

d=sqrt(16+9)

d=sqrt(25)

d=5

Find length DE

d=sqrt((4-8)^2+(5-7)^2)

d=sqrt((-4)^2+(-2)^2)

d=sqrt(16+4)

d=sqrt(20)

d= around 4.5

Find length EA

d=sqrt ((4-2)^2+(5-0)^2 )

d=sqrt(2^2+5^2)

d=sqrt(4+25)

d=sqrt(29)

d= around 5.4

P=7.8+9.4+5+4.5+5.4

P=32.1

The perimeter of the figure is 32.1, the correct option is A.

What is Distance Formula ?

The distance formula for two points (x,y) and (x',y') is

D = [tex]\rm \sqrt{ (x-x')^2 +( y-y')^2}[/tex]

A figure with coordinates  A,B,C,D,E is shown.

The length of the sides has to be determined to calculate the perimeter

The length of AB

[tex]\rm d= \sqrt{((2-(-4))^2+(0-5)^2}d=\sqrt{(6^2+(-5)^2)}d= \sqrt{{(36+25)}}d=\sqrt{61}[/tex]

d ≈ 7.8

The length of BC

[tex]\rm d= \sqrt{((4-(-4))^2+(10-5)^2)}d=\sqrt{(8^2+5^2)}d=\sqrt{(64+25)}d=\sqrt{(89)}[/tex]

d≈  9.4

The length of CD

d=sqrt(25)

d≈ 5

The length of DE

d ≈ 4.5

The length of EA

d ≈  5.4

Perimeter = Sum of all the sides

Perimeter = 7.8+9.4+5+4.5+5.4

Perimeter =32.1

Therefore, the perimeter of the figure is 32.1, the correct option is A.

To know more about Distance formula

https://brainly.com/question/8283882

#SPJ2