Answer:
[tex]a=3[/tex] and the x-intercept of the inverse function is [tex]x=-2[/tex]
Step-by-step explanation:
Given:
[tex]f(x)=\frac{x}{3}-2[/tex]
[tex]f^{-1}(x)=a(x+2)[/tex]
To find: slope, a, of the inverse function and the x-intercept of the inverse function
Solution:
Let [tex]y=f(x)=\frac{x}{3}-2[/tex]
[tex]y=\frac{x}{3} -2\\\frac{x}{3}=y+2\\x=3(y+2)\\[/tex]
So, [tex]f^{-1}(x)=3(x+2)[/tex]
On comparing [tex]f^{-1}(x)=a(x+2)[/tex] with [tex]f^{-1}(x)=3(x+2)[/tex], [tex]a=3[/tex]
To find the x-intercept of the inverse function, put [tex]f^{-1}(x)=0\Rightarrow 3(x+2)=0\Rightarrow x=-2[/tex]