Using Equations to Compare Linear Functions
Consider the function and its inverse:
f(x) =
) = x -2
-(x) = (x + 2)
The slope, a, of the inverse function is
and the x-intercept of the inverse function is at x =
Intro

Using Equations to Compare Linear Functions Consider the function and its inverse fx x 2 x x 2 The slope a of the inverse function is and the xintercept of the class=

Respuesta :

Answer:

[tex]a=3[/tex] and the x-intercept of the inverse function is [tex]x=-2[/tex]

Step-by-step explanation:

Given:

[tex]f(x)=\frac{x}{3}-2[/tex]

[tex]f^{-1}(x)=a(x+2)[/tex]

To find: slope, a, of the inverse function and the x-intercept of the inverse function

Solution:

Let [tex]y=f(x)=\frac{x}{3}-2[/tex]

[tex]y=\frac{x}{3} -2\\\frac{x}{3}=y+2\\x=3(y+2)\\[/tex]

So, [tex]f^{-1}(x)=3(x+2)[/tex]

On comparing [tex]f^{-1}(x)=a(x+2)[/tex] with [tex]f^{-1}(x)=3(x+2)[/tex], [tex]a=3[/tex]

To find the x-intercept of the inverse function, put [tex]f^{-1}(x)=0\Rightarrow 3(x+2)=0\Rightarrow x=-2[/tex]

The slope, a, of the inverse function is  3 , and the x-intercept of the inverse function is at x =  -2 .