Respuesta :

Answer:

[tex]-\frac{16}{17}\\-0.94117[/tex]

Step-by-step explanation:

[tex]\frac{-\frac{1}{2}}{\frac{2\left(9+3\right)-4-3}{4\left(8\right)}}\\\mathrm{Remove\:parentheses}:\quad \left(a\right)=a\\=\frac{-\frac{1}{2}}{\frac{2\left(9+3\right)-4-3}{4\cdot \:8}}\\\frac{2\left(9+3\right)-4-3}{4\cdot \:8}=\frac{17}{32}\\\frac{2\left(9+3\right)-4-3}{4\cdot \:8}\\2\left(9+3\right)-4-3=17\\2\left(9+3\right)-4-3\\2\left(9+3\right)=24\\2\left(9+3\right)\\\mathrm{Add\:the\:numbers:}\:9+3=12\\=2\cdot \:12\\\mathrm{Multiply\:the\:numbers:}\:2\cdot \:12=24\\=24-4-3[/tex]

[tex]\mathrm{Subtract\:the\:numbers:}\:24-4-3=17\\=\frac{17}{4\cdot \:8}\\\mathrm{Multiply\:the\:numbers:}\:4\cdot \:8=32\\=\frac{17}{32}\\\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}\\=-\frac{\frac{1}{2}}{\frac{17}{32}}\\\mathrm{Divide\:fractions}:\quad \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a\cdot \:d}{b\cdot \:c}\\=-\frac{1\cdot \:32}{2\cdot \:17}\\Refine\\=-\frac{32}{2\cdot \:17}\\\mathrm{Multiply\:the\:numbers:}\:2\cdot \:17=34\\=-\frac{32}{34}[/tex]

[tex]\mathrm{Cancel\:the\:common\:factor:}\:2\\=-\frac{16}{17}\\\mathrm{Decimal:\quad }\:-0.94117[/tex]

Otras preguntas