Answer:
1. The equation has no real solutions
2. [tex]x_1 = -1 [/tex] and [tex]x_2 = -3 [/tex]
3. p = 0 and p = -2
Step-by-step explanation:
1. Eq: x² - 3x + 5
discriminant: b² - 4(a)(c) = (-3)² - 4(1)(5) = 9 - 20 = -19 < 0
Therefore, the equation has no real solutions
2. Eq: x² + 3 = -4x
0 = x² + 4x + 3
[tex]x = \frac{-b \pm \sqrt{b^2 - 4(a)(c)}}{2(a)} [/tex]
[tex]x = \frac{-4 \pm \sqrt{4^2 - 4(1)(3)}}{2(1)} [/tex]
[tex]x = \frac{-4 \pm 2}{2} [/tex]
[tex]x_1 = \frac{-4 + 2}{2} [/tex]
[tex]x_1 = -1 [/tex]
[tex]x_2 = \frac{-4 - 2}{2} [/tex]
[tex]x_2 = -3 [/tex]
3. Eq: 4p(5p+ 10) = 0
Zero-Product Property states that:
4p = 0 or 5p + 10 = 0
The first solution is p = 0. The second is:
5p + 10 = 0
5p = -10
p= -10/5 = -2