Respuesta :

Answer:

Option (B). Perimeter of the quadrilateral ABCD= 14.6 units

Step-by-step explanation:

From the figure attached,

Coordinates of the vertices are A(3, 5), B(1, 3), C(3, -1), D(5, 3).

Length of AB = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]

                      = [tex]\sqrt{(3-1)^2+(5-3)^2}[/tex]

                      = [tex]\sqrt{8}[/tex]

                      = 2.83 units

Length of AD = [tex]\sqrt{(3-5)^2+(5-3)^2}[/tex]

                      = [tex]\sqrt{8}[/tex]

                      = 2.83 units

Length of BC = [tex]\sqrt{(1-3)^2+(3+1)^2}[/tex]

                      = [tex]\sqrt{20}[/tex]

                      = 4.47 units

Length of DC = [tex]\sqrt{(5-3)^2+(3+1)^2}[/tex]

                       = [tex]\sqrt{20}[/tex]

                       = 4.47 units

Perimeter of the quadrilateral = AB + AD + DC + BC

                                                 = 2.83 + 2.83 + 4.47 + 4.47

                                                = 14.6 units  

Option (B) is the answer.