Respuesta :

Answer:

a). Center of the circle = (-2, 5)

b). Equation of the line ⇒ y = [tex]-\frac{4}{5}x+\frac{58}{5}[/tex]

Step-by-step explanation:

Equation of the circle is,

x² + 4x + y²- 10y + 20 = 30

a). [x² + 2(2)x + 4 - 4] + [y²- 2(5)y + 25] - 25 + 20 = 30

   [x² + 2(2)x + 4] - 4 + [y² - 2(5)y + 25] - 25 + 20 = 30

   (x + 2)² + (y - 5)²- 29 + 20 = 30

   (x + 2)² + (y - 5)²- 9 = 30

   (x + 2)² + (y - 5)² = 39

By comparing this equation with the standard equation of a circle,

    Center of the circle is (-2, 5).

b). A point (2, 10) lies on this circle.

    Slope of the line joining this point to the center (-2, 5),

    [tex]m_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

          = [tex]\frac{10-5}{2+2}[/tex]

          = [tex]\frac{5}{4}[/tex]

    Let the slope of the tangent which is perpendicular to this line is '[tex]m_{2}[/tex]'

    Then by the property of perpendicular lines,

          [tex]m_{1}\times m_{2}=-1[/tex]

          [tex]\frac{5}{4}\times m_{2}=-1[/tex]

                 [tex]m_{2}=-\frac{4}{5}[/tex]

   Now the equation of the line passing though (2, 10) having slope [tex]m_{2}=-\frac{4}{5}[/tex]

           y - y' = [tex]m_{2}(x-x')[/tex]

           y - 10 = [tex]-\frac{4}{5}(x-2)[/tex]

           y - 10 = [tex]-\frac{4}{5}x+\frac{8}{5}[/tex]

                  y = [tex]-\frac{4}{5}x+\frac{8}{5}+10[/tex]

                  y = [tex]-\frac{4}{5}x+\frac{58}{5}[/tex]

Therefore, equation of the line will be, y = [tex]-\frac{4}{5}x+\frac{58}{5}[/tex]