Answer:
[tex]t=9.7s[/tex]
Explanation:
Hello,
In this case, we have a second order kinetics given the second power of the concentration of chlorine (V) oxide in the rate expression, thus, the integrated equation for the concentration decay is:
[tex]\frac{1}{[Cl_2O_5]}=kt+\frac{1}{[Cl_2O_5]_0}[/tex]
Thus, the final concentration for a 94% decrease is:
[tex][Cl_2O_5]=0.600M-0.600M*0.94=0.036M[/tex]
Therefore, we compute the time for such decrease:
[tex]kt=\frac{1}{[Cl_2O_5]}-\frac{1}{[Cl_2O_5]_0}=\frac{1}{0.036M}-\frac{1}{0.60M} =26.1M^{-1}[/tex]
[tex]t=\frac{26.1M^{-1}}{k}= \frac{26.1M^{-1}}{2.7M^{-1}*s^{-1}}\\\\t=9.7s[/tex]
Regards.