Answer:
Option D.
Step-by-step explanation:
If a line passing through two points, then the equation of line is
[tex](y-y_1)=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
It is given that Line f(x) passes through points (-4, 0) and (-3, 1). So, equation of line f(x) is
[tex](y-0)=\dfrac{1-0}{-3-(-4)}(x-(-4))[/tex]
[tex]y=1(x+4)[/tex]
So, function f(x) is
[tex]f(x)=(x+4)[/tex] ...(1)
Line g(x) passes through points (-4, 0) and (-3, -3). So, equation of line f(x) is
[tex](y-0)=\dfrac{-3-0}{-3-(-4)}(x-(-4))[/tex]
[tex]y=-3(x+4)[/tex]
So, function g(x) is
[tex]g(x)=-3(x+4)[/tex] ...(2)
Using (1) and (2), we get
[tex]g(x)=-3f(x)[/tex] ...(3)
It is given that
[tex]g(x)=kf(x)[/tex] ...(4)
On comparing (3) and (4), we get
[tex]k=-3[/tex]
Therefore, the correct option is D.