Answer:
1. c
2. e
3. d
Explanation:
1.
From Einstein's Photoelectric Equation, we know that:
Energy given up by photon = Work Function + K.E of Electron
hc/λ = φ + K.E
where,
h = Plank's Constant = 6.626 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light source = 200 nm = 2 x 10⁻⁷ m
φ = (5.1 eV)(1.6 x 10⁻¹⁹ J/eV) = 8.16 x 10⁻¹⁹ J
Therefore,
(6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(2 x 10⁻⁷ m) - 8.16 x 10⁻¹⁹ = K.E
K.E = (9.939 - 8.16) x 10⁻¹⁹ J
K.E = 1.778 x 10⁻¹⁹ J
The positive answer shows that electrons will be emitted. Since it is clear from the equation the the K.E of electron decreases with the increase in work function. Therefore:
c. less energetic photo-electrons (on average)
2.
The increase in light sources means an increase in the intensity of light. The no. of photons are increased, due to increase of intensity. Thus, more photons hit the metal and they eject greater no. of electrons. Therefore,
e. more photo-electrons ejected
3.
X-rays have smaller wavelength and greater energy than ultraviolet rays. Thus, the photons with greater energy will strike the metal and as a result, electrons with higher energy will be ejected.
d. more energetic photo-electrons (on average)