Respuesta :

Answer:

Center = (7, - 5)

Radius = 3

Step-by-step explanation:

[tex] {x}^{2} + {y}^{2} + 14x - 10y + 65 = 0 \\ {x}^{2} + 14x + {y}^{2} - 10 + 65 = 0 \\ ( {x}^{2} + 14x + {7}^{2}) - {7}^{2} + ({y}^{2} - 10y + {5}^{2}) \\- {5}^{2} + 65 = 0 \\ (x + 7)^{2} + (y - 5)^{2} - 49 - 25 + 65 = 0 \\ (x + 7)^{2} + (y - 5)^{2} - 49 + 40= 0 \\ (x + 7)^{2} + (y - 5)^{2} - 9= 0 \\ (x + 7)^{2} + (y - 5)^{2} = 9 \\ (x + 7)^{2} + (y - 5)^{2} = {3}^{2} \\ equating \: it \: with \: \\ (x - h)^{2} + (y - k)^{2} = {r}^{2} \\ - h = 7 \implies \: h = - 7 \\ - k = - 5 \implies \: k = 5 \\ center = ( - h, \: - k) = (7, \: \: - 5) \\ \\ radius \: r = 3[/tex]