Respuesta :

Answer:

a= -3/8

b= 1/8

Step-by-step explanation:

To remove i from the denominator, we need to multiply the numerator and denominator by -i

[tex]\frac{(-1-3i)(-i)}{8i(-i)}[/tex]

This simplifies to

[tex]\frac{i+3i^{2} }{-8i^{2} }[/tex]

This further simplifies to

[tex]\frac{i-3}{8}[/tex]

This can be rewritten as

[tex]-\frac{3}{8} +\frac{1}{8} i[/tex]

a= -3/8

b= 1/8

Answer:

[tex] a = - \frac{3}{8} \\ \\ b = \frac{1}{8} [/tex]

Step-by-step explanation:

[tex] \frac{ - 1 - 3i}{8i} \\ \\ = \frac{ - 1 - 3i}{8i} \times \frac{i}{i} \\ \\ = \frac{( - 1 - 3i)i}{8i \times i} \\ \\ = \frac{ -1 \times i - 3 {i}^{2} }{8 {i}^{2} } \\ \\ = \frac{ - i - 3 ( - 1)}{8 ( - 1) } \\ \\ = \frac{ - i + 3}{ - 8} \\ \\ = \frac{ i - 3}{ 8} \\ \\ = \frac{ - 3 + i}{ 8} \\ \\ = \frac{ - 3}{8} + \frac{i}{8} \\ \\ \purple{ \bold{ = - \frac{3}{8} + \frac{1}{8} i}} \\ equating \: it \: with \: a + bi \\ \\ a = - \frac{3}{8} \\ \\ b = \frac{1}{8} \\ [/tex]