Respuesta :

Answer:

BE = 3.6 units

BD = 12.4 units

Step-by-step explanation:

From the picture attached,

Since DE║AC, ΔBDE and ΔABC will be similar.

In these similar triangles corresponding side will be in the same ratio.

[tex]\frac{BD}{AB}=\frac{BE}{BC}[/tex]

[tex]\frac{AB-AD}{AB}=\frac{BE}{BC}[/tex]

[tex]1-\frac{AD}{AB}=\frac{BE}{BC}[/tex]  

1 - [tex]\frac{BE}{AB}=\frac{BE}{BC}[/tex] [Since AD = BE]

1 - [tex]\frac{BE}{16}=\frac{BE}{24}[/tex]

1 = [tex]\frac{BE}{16}+\frac{BE}{24}[/tex]

1 = [tex]BE(\frac{3+2}{48})[/tex]

BE = [tex]\frac{18}{5}[/tex]

BE = 3.6 units

Therefore, AD = BE = 3.6 units [given]

Now BD = AB - AD

              = 16 - 3.6

              = 12.4 units