A rod of mass M = 154 g and length L = 35 cm can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m = 11 g, moving with speed V = 9 m/s, strikes the rod at angle θ = 29° a distance D = L/3 from the end and sticks to the rod after the collision.Calculate the rotational kinetic energy, in joules, of the system after the collision.

Respuesta :

Answer:

Explanation:

moment of inertia of the rod = 1/3 mL² , m is mass and L is length of rod.

1/3 x .154 x .35²

= .00629

moment of inertia  of putty about the axis of rotation

= m d² , m is mass of putty and d is distance fro axis

= .011 x( .35 / 3 )²

= .00015

Total moment of inertia I = .00644 kgm²

angular momentum of putty about the axis of rotation

= mvRsinθ

m is mass , v is velocity , R is distance where it strikes the rod and θ is angle  with the rod at which putty strikes

= .011 x 9 x .35 / 3 x sin 29

= .0056

Applying conservation of angular momentum

angular momentum of putty = angular momentum of system after of collision

.0056 =  .00644 ω where ω is angular velocity of the rod after collision

ω = .87 rad /s .

Rotational energy

= 1/2 I ω²

I is total moment of inertia

=  .5 x .00644 x .87²

= 2.44 x 10⁻³ J .