Respuesta :
Answer:
(a) f = 185 Hz
(b) v = 266.4 m/s
Explanation:
(a) The lowest frequency can be calculated by using the following formula for the calculation of the modes (resonant frequencies) in a string:
[tex]f_n=\frac{nv}{2L}[/tex]
[tex]f_n=nf[/tex]
n: order of the mode
v: velocity of the waves in the string
L: length of the string = 72.0cm = 0.72m
fn: frequency of the n-th mode
With the information about two consecutive modes you can find the lowest resonant frequency. First you find the resonant mode n:
[tex]f_n=nf\\\\f_{n-1}=(n-1)f\\\\\frac{f_n}{f_{n-1}}=\frac{n}{n-1}[/tex]
you solve the previous equation for n:
[tex](n-1)f_n=nf_{n-1}\\\\555n-555=370n\\\\n=3[/tex]
With this information you can calculate the lowest resonant frequency:
[tex]f_n=nf\\\\f=\frac{f_n}{n}=\frac{555}{3}=185Hz[/tex]
b) You have information about two consecutive modes fn, fn-1. Then, you can calculate the velocity of the waves:
[tex]f_{n}-f_{n-1}=n\frac{v}{2L}-(n-1)\frac{v}{2L}\\\\f_n-f_{n-1}=\frac{v}{2L}\\\\v=2L(f_n-f_{n-1})[/tex]
fn = 555 Hz
fn-1: 370 Hz
[tex]v=2(0.72m)(555-370)Hz=266.4\frac{m}{s}[/tex]´
hence, the velocityof the waves in the string is 266.4 m/s