Respuesta :
Answer:
Explanation:
Moment of inertia of the rod = 1/12 m L²
m is mass of the rod and L is its length
= 1/2 x 2.3 x 2 x 2
= 4.6 kg m²
Moment of inertia of masses attached with the rod
= m₁ d² + m₂ d²
m₁ and m₂ are masses attached , and d is their distance from the axis of rotation
= 5.3 x 1² + 3.5 x 1²
= 8.8 kg m²
Total moment of inertia = 13.4 kg m²
B )
Rotational kinetic energy = 1/2 I ω²
I is total moment of inertia and ω is angular velocity
= .5 x 13.4 x 2²
= 26.8 J .
C )
when mass of rod is negligible , moment of inertia will be due to masses only
Total moment of inertia of masses
= 8.8 kg m²
D )
kinetic energy of the system
= .5 x 8.8 x 2²
= 17.6 J .
(A) Total moment of inertia is 13.4 kgm²
(B) Total kinetic energy is 26.8J
(C) Moment of inertia is 8.8 kgm²
(D) Kinetic energy is 17.6J
Rotational motion:
(A) The moment of inertia of the rod is given by:
I = 1/12 mL²
where m is the mass of the rod
and L is the length
So,
I = (1/12) × 2.3 × 2²
I = 4.6 kgm²
Now, the moment of inertia of masses attached to the rod is given by:
I' = m₁ d² + m₂d²
where m₁ and m₂ are masses
and d is their distance from the axis of rotation
I' = 5.3 × 1² + 3.5 × 1²
I' = 8.8 kgm²
The total moment of inertia of the system is given by:
I(tot) = I + I'
I(tot) = 13.4 kgm²
(B) The rotational kinetic energy of an object with a moment of inertia I and angular velocity ω is given by:
KE = 1/2 I(tot)ω²
KE = 0.5 × 13.4 × 2²
KE = 26.8J
(C) If the mass of the rod is negligible, then the moment of inertia of the rod will be zero. So the total moment of inertia will be
I(tot) = I' = 8.8 kgm²
(D) the kinetic energy of the system when the mass of the rod is negligible and the angular speed is 2 rad/s is given by:
KE = 1/2 I'ω²
KE = 0.5 × 8.8 × 2²
KE = 17.6J
Learn more about rotational motion:
https://brainly.com/question/15120445?referrer=searchResults