Answer:
= 8.2*10⁻¹²
Explanation:
Probability of finding an electron to occupy a state of energy, can be expressed by using Boltzmann distribution function
[tex]f(E) = exp(-\frac{E-E_f}{K_BT} )[/tex]
From the given data, fermi energy lies half way between valence and conduction bands, that is half of band gap energy
[tex]E_f = \frac{E_g}{2}[/tex]
Therefore,
[tex]f(E) = exp(-\frac{E-\frac{E_g}{2} }{K_BT} )[/tex]
Using boltzman distribution function to calculate the ratio of number of electrons in the conduction bands of those electrons in the valence bond is
[tex]\frac{n_{con}}{n_{val}} =\frac{exp(-\frac{[E_c-E_g/2]}{K_BT} )}{exp(-\frac{[E_v-E_fg/2}{K_BT} )}[/tex]
[tex]= exp(\frac{-(E_c-E_v}{K_BT} )\\\\=exp(\frac{-(0.66eV)}{(8.617\times10^-^5eV/K)(300K)} )\\\\=8.166\times10^-^1^2\approx8.2\times10^{-12}[/tex]