In ΔABC, ∠B measures 35° and the values of a and b are 19 and 11, respectively. Find the remaining measurements of the triangle, and round your answers to the nearest tenth. ∠A = 82.2°,∠C = 62.8°, c = 17.1 ∠A = 82.2°, ∠C = 62.8°, c = 12.4 ∠A = 22.5°, ∠C = 25.5°, c = 12.4 ∠A = 22.5°, ∠C = 25.5°, c = 17.1

Respuesta :

Answer:

(A)∠A = 82.2°,∠C = 62.8°, c = 17.1

Step-by-step explanation:

In Triangle ABC

∠B=35°

a=19

b=11

Using Law of SInes

[tex]\dfrac{a}{\sin A} =\dfrac{b}{\sin B} \\\dfrac{19}{\sin A} =\dfrac{11}{\sin 35^\circ} \\11*\sin A=19*\sin 35^\circ\\\sin A=(19*\sin 35^\circ) \div 11\\A= \arcsin [(19*\sin 35^\circ) \div 11]\\A=82.2^\circ[/tex]

Now:

[tex]\angle A+\angle B+\angle C=180^\circ\\35^\circ+82.2^\circ+\angle C=180^\circ\\\angle C=180^\circ-[35^\circ+82.2^\circ]\\\angle C=62.8^\circ[/tex]

Using Law of Sines

[tex]\dfrac{c}{\sin C} =\dfrac{a}{\sin A} \\\dfrac{c}{\sin 62.8^\circ} =\dfrac{19}{\sin 82.2^\circ}\\c=\dfrac{19}{\sin 82.2^\circ}*\sin 62.8^\circ\\\\c=17.1[/tex]

Therefore:

∠A = 82.2°,∠C = 62.8°, c = 17.1

The correct option is A.

Answer:

it is a

∠A = 82.2°,∠C = 62.8°, c = 17.1

Step-by-step explanation:

give the other dude brainliest he is correct