Answer:
[tex]\dfrac{-1+\sqrt{21}}{2}[/tex] and [tex]\dfrac{-1-\sqrt{21}}{2}[/tex].
Step-by-step explanation:
The given quadratic equation is
[tex]x^2=5-x[/tex]
It is can written as
[tex]x^2+x-5=0[/tex]
If a quadratic equation is [tex]ax^2+bx+c=0[/tex], then the quadratic formula is
[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
In the given quadratic equation [tex]a=1,b=1,c=-5[/tex]. So,
[tex]x=\dfrac{-1\pm \sqrt{1^2-4(1)(-5)}}{2(1)}[/tex]
[tex]x=\dfrac{-1\pm \sqrt{1+20}}{2}[/tex]
[tex]x=\dfrac{-1\pm \sqrt{21}}{2}[/tex]
[tex]x=\dfrac{-1+\sqrt{21}}{2},\dfrac{-1-\sqrt{21}}{2}[/tex]
Therefore, the values of x are [tex]\dfrac{-1+\sqrt{21}}{2}[/tex] and [tex]\dfrac{-1-\sqrt{21}}{2}[/tex].