Respuesta :

Answer:

[tex]\dfrac{-1+\sqrt{21}}{2}[/tex] and [tex]\dfrac{-1-\sqrt{21}}{2}[/tex].

Step-by-step explanation:

The given quadratic equation is

[tex]x^2=5-x[/tex]

It is can written as

[tex]x^2+x-5=0[/tex]

If a quadratic equation is [tex]ax^2+bx+c=0[/tex], then the quadratic formula is

[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

In the given quadratic equation [tex]a=1,b=1,c=-5[/tex]. So,

[tex]x=\dfrac{-1\pm \sqrt{1^2-4(1)(-5)}}{2(1)}[/tex]

[tex]x=\dfrac{-1\pm \sqrt{1+20}}{2}[/tex]

[tex]x=\dfrac{-1\pm \sqrt{21}}{2}[/tex]

[tex]x=\dfrac{-1+\sqrt{21}}{2},\dfrac{-1-\sqrt{21}}{2}[/tex]

Therefore, the values of x are [tex]\dfrac{-1+\sqrt{21}}{2}[/tex] and [tex]\dfrac{-1-\sqrt{21}}{2}[/tex].